419 research outputs found

    Sonet Network Design Problems

    Full text link
    This paper presents a new method and a constraint-based objective function to solve two problems related to the design of optical telecommunication networks, namely the Synchronous Optical Network Ring Assignment Problem (SRAP) and the Intra-ring Synchronous Optical Network Design Problem (IDP). These network topology problems can be represented as a graph partitioning with capacity constraints as shown in previous works. We present here a new objective function and a new local search algorithm to solve these problems. Experiments conducted in Comet allow us to compare our method to previous ones and show that we obtain better results

    Bargaining Mechanisms for One-Way Games

    Full text link
    We introduce one-way games, a framework motivated by applications in large-scale power restoration, humanitarian logistics, and integrated supply-chains. The distinguishable feature of the games is that the payoff of some player is determined only by her own strategy and does not depend on actions taken by other players. We show that the equilibrium outcome in one-way games without payments and the social cost of any ex-post efficient mechanism, can be far from the optimum. We also show that it is impossible to design a Bayes-Nash incentive-compatible mechanism for one-way games that is budget-balanced, individually rational, and efficient. To address this negative result, we propose a privacy-preserving mechanism that is incentive-compatible and budget-balanced, satisfies ex-post individual rationality conditions, and produces an outcome which is more efficient than the equilibrium without payments. The mechanism is based on a single-offer bargaining and we show that a randomized multi-offer extension brings no additional benefit.Comment: An earlier, shorter version of this paper appeared in Proceedings of the Twenty-Fourth International joint conference on Artificial Intelligence (IJCAI) 201
    corecore